Skip to main content

Memory Triage & RAG System

Memfit AI's intelligence is enhanced by sophisticated memory management and knowledge retrieval systems.

Memory Triage (Intelligent Hippocampus)

Memory Triage acts as the system's intelligent hippocampus, managing long-term memory persistence and retrieval.

C.O.R.E. P.A.C.T. Framework

Memory fragments are assessed and scored across multiple dimensions:

DimensionDescriptionWeight
ConnectivityLinks to other memoriesHigh
OriginSource reliabilityMedium
RelevanceTask applicabilityHigh
EmotionUser sentiment signalsLow
PreferenceUser preferencesMedium
ActionabilityPractical utilityHigh
CompletenessInformation wholenessMedium
TemporalityTime relevanceMedium

Memory Lifecycle

Input → Scoring → Threshold Check → Persistence

Below Threshold → Discard

Above Threshold → Index → Vector DB

Potential Questions Index

High-score memories are indexed with:

  • Predicted future queries
  • Semantic associations
  • Contextual tags
  • Usage patterns

RAG System (External Brain)

The RAG (Retrieval-Augmented Generation) system serves as an active, agentic knowledge service.

Hybrid Indexing

The RAG system uses multiple indexing strategies:

Vector Indexing

  • Semantic similarity search
  • Embedding-based retrieval
  • Fuzzy matching

Keyword Indexing

  • Exact term matching
  • Technical terminology
  • Identifier search

Retrieval Capabilities

Scalar Filtering

  • Filter by metadata
  • Time-based filtering
  • Source filtering
  • Type filtering

Multi-hop Retrieval

  • Follow knowledge chains
  • Aggregate related information
  • Build comprehensive context

Knowledge Sources

The RAG system fuses multiple knowledge sources:

┌─────────────────────────────────────────────┐
│ RAG Knowledge Base │
├─────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────────────┐ │
│ │ Domain │ │ Tools & Forges │ │
│ │ Knowledge │ │ Documentation │ │
│ └─────────────┘ └─────────────────────┘ │
│ ┌─────────────┐ ┌─────────────────────┐ │
│ │ Historical │ │ External │ │
│ │ Memories │ │ Knowledge │ │
│ └─────────────┘ └─────────────────────┘ │
└─────────────────────────────────────────────┘

Integration with Execution

Context Enhancement

Before each decision:

  1. Query formulation based on current state
  2. Memory retrieval for relevant history
  3. Knowledge retrieval for domain expertise
  4. Context assembly for LLM

Active Knowledge Service

The RAG system is not passive:

  • Proactively suggests relevant information
  • Updates knowledge during execution
  • Learns from successful interactions

Configuration

Memory Settings

SettingDescriptionDefault
scoreThresholdMinimum score for persistence0.6
maxMemoriesMaximum stored memories10000
decayRateTime-based relevance decay0.1

RAG Settings

SettingDescriptionDefault
topKNumber of results to retrieve5
minSimilarityMinimum similarity threshold0.7
multiHopDepthMaximum retrieval depth2