Memory Triage & RAG System
Memfit AI's intelligence is enhanced by sophisticated memory management and knowledge retrieval systems.
Memory Triage (Intelligent Hippocampus)
Memory Triage acts as the system's intelligent hippocampus, managing long-term memory persistence and retrieval.
C.O.R.E. P.A.C.T. Framework
Memory fragments are assessed and scored across multiple dimensions:
| Dimension | Description | Weight |
|---|---|---|
| Connectivity | Links to other memories | High |
| Origin | Source reliability | Medium |
| Relevance | Task applicability | High |
| Emotion | User sentiment signals | Low |
| Preference | User preferences | Medium |
| Actionability | Practical utility | High |
| Completeness | Information wholeness | Medium |
| Temporality | Time relevance | Medium |
Memory Lifecycle
Input → Scoring → Threshold Check → Persistence
↓
Below Threshold → Discard
↓
Above Threshold → Index → Vector DB
Potential Questions Index
High-score memories are indexed with:
- Predicted future queries
- Semantic associations
- Contextual tags
- Usage patterns
RAG System (External Brain)
The RAG (Retrieval-Augmented Generation) system serves as an active, agentic knowledge service.
Hybrid Indexing
The RAG system uses multiple indexing strategies:
Vector Indexing
- Semantic similarity search
- Embedding-based retrieval
- Fuzzy matching
Keyword Indexing
- Exact term matching
- Technical terminology
- Identifier search
Retrieval Capabilities
Scalar Filtering
- Filter by metadata
- Time-based filtering
- Source filtering
- Type filtering
Multi-hop Retrieval
- Follow knowledge chains
- Aggregate related information
- Build comprehensive context
Knowledge Sources
The RAG system fuses multiple knowledge sources:
┌─────────────────────────────────────────────┐
│ RAG Knowledge Base │
├─────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────────────┐ │
│ │ Domain │ │ Tools & Forges │ │
│ │ Knowledge │ │ Documentation │ │
│ └─────────────┘ └─────────────────────┘ │
│ ┌─────────────┐ ┌─────────────────────┐ │
│ │ Historical │ │ External │ │
│ │ Memories │ │ Knowledge │ │
│ └─────────────┘ └─────────────────────┘ │
└─────────────────────────────────────────────┘
Integration with Execution
Context Enhancement
Before each decision:
- Query formulation based on current state
- Memory retrieval for relevant history
- Knowledge retrieval for domain expertise
- Context assembly for LLM
Active Knowledge Service
The RAG system is not passive:
- Proactively suggests relevant information
- Updates knowledge during execution
- Learns from successful interactions
Configuration
Memory Settings
| Setting | Description | Default |
|---|---|---|
scoreThreshold | Minimum score for persistence | 0.6 |
maxMemories | Maximum stored memories | 10000 |
decayRate | Time-based relevance decay | 0.1 |
RAG Settings
| Setting | Description | Default |
|---|---|---|
topK | Number of results to retrieve | 5 |
minSimilarity | Minimum similarity threshold | 0.7 |
multiHopDepth | Maximum retrieval depth | 2 |